散射参数
为了进一步了解网络分析给我们带来的便利,有必要先了解网络分析的语言——散射参数。图(1)是一个Π型衰减器,图(2)是它的电路图,如何简单明确的描述它的性能呢?熟悉传统电路分析的人不难想到,可以先把右边的端口开路,然后用万用表测试左边的电阻;再把左边开路,测试右边的电阻。给左边通上适当的电流,然后用电压表测试右边的电压,然后反过来再测试一次。根据这些数据依次得到四个参数:开路输入电阻、开路输出电阻,开路正向传输电阻、开路反向传输电阻。当看到这一堆似曾相识参数之后,您一定会问:这东西与衰减器有啥关系,大家喜闻乐见的衰减量是多少?
图1
图2
这个例子说明,在低频电路上常用的Z参数(开路阻抗参数),用在射频通信领域既不符合习惯,也难以测量。归纳起来,有三个重要原因促使我们选择一种新的参数来描述电路:(1)大多数射频电路不允许端口开路或短路,因为这样做会让电路偏离预定的工作状态;(2)波长很短的时候,即使信号只传播很短距离,也会发生不可忽视的相位移动,使测试计算变得非常困难;(3)需要有一整套方法,能够根据所得到的参数迅速简便的设计电路。基于上述原因,散射参数应运而生。
散射参数(Scattering Parameters)常被简称为S参数。和阻抗参数类似,对于有两个端口的网络(例如衰减器)而言,它也包括四个部分,用Sij表示,其中,i表示待检测端口,j表示激励信号的入射端口:
S11:被测器件(device under testing,简称DUT)的一个端口对信号的反射量,又称回波损耗;
S21:信号通过被测器件时产生的变化(幅度和相位变化,又称插损或增益);
S12:信号以相反方向通过被测器件时产生的变化;
S22:被测器件的另一个端口对信号的反射量。
当一个端口在测试时没有被用到时,应接上匹配负载,于是电路能够非常接近正常的工作状态。测量散射参数,只需要了解信号流经被测器件时产生的变化,同时又不会对电路的正常工作造成影响,因此更加简单、直接。后面将要介绍的网络分析仪,就是专门测量散射参数的装置。
通过数学计算,散射参数能够被转换为其它类型的参数。
S参数是归一化的相对值
四个S参数都代表出射信号与入射信号的电压比(或功率比,在计算时应统一)。还是用衰减器来举例,图(2)中,入射信号的功率是1W,经过待测器件,输出0.1W,则S21=0.1/1=0.1。换算成分贝值则为-10dB。于是这支衰减器的衰减量是10dB。这一相对值又是频率的函数。随着频率的变化,衰减器的衰减量可能发生波动。把频率作为横坐标,衰减量作为纵坐标,可以得到幅度——频率特性图,简称幅频特性图。
有的时候还需要关心信号通过电路以后相位发生的变化。例如一支天线,给他输入1W∠0°的信号,在天线的端口上测到反射信号功率为入射信号的0.5倍(称为反射系数),但是反射信号与入射信号之间,电压的相位相差了90度,则天线的S11表示为0.707∠90°,表明有-3dB的回波损耗,且相位滞后90度。
网络分析的效益
了解了散射参数以后再来探讨网络分析的效益就很容易理解。上面举例的衰减器,当对他进行网络分析以后,直接得到了衰减量这个参数,就能直观的了解衰减器接入射频电路以后会产生什么效果。下面天线的例子,进一步说明了这种分析方法的方便之处。
通过网络分析,能够直接测到天线的S11参数,包含一个幅度(或功率)关系和一个相位关系,例如0.5∠90°。图(3)是一个极坐标的S11关系图,它的径向坐标代表幅度关系,绕轴旋转的角度代表相位关系。图(4)是一个直角坐标表示的阻抗图,横坐标代表电阻,纵坐标代表电抗。对图(4)做从直角坐标到极坐标的坐标变换,并让刻度符合单位阻抗(Zn=Z/Z0,Z0=50Ω)与反射系数(Γ)之间的关系式Zn=(1+Γ)/(1-Γ),可以得到图(5)所示的阻抗圆图。图(3)和图(5)重叠起来,得到史密斯圆图(Smith Chat,图6)。在这张图上,可以根据S11参数,直接读取天线的输入阻抗。我们的目的是匹配以传输大的功率,这时有两种方法:(1)传输线末端提供一个与天线输入阻抗共轭的输出阻抗;(2)通过调试和接入匹配元件,让天线的输入阻抗变为纯粹的50欧。对于后一种方法,匹配元件的大小,可以在史密斯图上方便的求解。
图3
图4
图5
图6
不论是反射系数-相位图还是史密斯图,都没有频率坐标。一个频率的S参数,只对应图上的一个点。网络分析仪显示结果的过程,就是扫描若干频率,然后把测得的S参数都画在图上,用平滑的曲线连接起来。
事实上人们发明了一整套使用S参数的办法,能够极大的简化射频电路设计。这方面已经有很多资料,感兴趣的读者可以自行了解。
网络分析仪
有了上文的基础,现在我们应该关心一下如何求得S参数。在很久以前,求S参数虽然已经是网络分析中便捷的手段,但仍是一件非常麻烦的事情。原理上无外乎用信号源给待测器件送入一个稳定的信号,然后用电平表测输出功率,或者用测量线在不同的距离上测试电压,从而计算得到幅度和相位。问题就在于这种测试每次只能针对一个频率,如果要了解不同频率上的变化趋势,就需要进行多次测量,有的时候一测就是几天。
随着自动化技术的发展,计算机控制的网络分析仪问世,这种仪器可以连续不断的对多个频率的S参数进行测量,而且只需要若干秒时间。特别是近十年,3GHz以下的网络分析仪大幅度降价,在国内还出现了所谓“公版”仪器,各地厂商风起云涌,让这种以前只有大型科研单位才能安置的昂贵设备,一下子普及到几乎所有射频工程师手中,不久的将来,还会普及到爱好者手中。
简单的网络分析仪——扫频仪
扫频仪是一种S21参数的测试装置,它的框图如图(7)。它由一个频率可变的信号源和一个检波器组成。待测器件接在信号源和检波器之间。测试时,先把检波器直接接在信号源上,让信号源扫过所有需要测试的频率,并把检波器检测到的幅度存储下来。接上待测器件之后,检波器检测到一个新的幅度(功率)值。把新的幅度值与刚才存储的幅度值进行比较,即可得到S21参数。用计算机控制信号源连续的扫描,可以绘制出幅频特性图。
图7
为扫频仪增加反射电桥或定向耦合器,便可用于测量S11参数。S11参数和电压驻波比(VSWR)之间可以直接换算,因此又可以显示驻波比曲线。
扫频仪只能得到幅频特性图,因此是一种标量网络分析仪。
多输入通道的扫频仪
图7的扫频仪只有一个检测通道,这种仪器给出的S参数虽然是相对值,但是测量的却是对值。从对值到S21参数,靠的是把测试结果与存储的结果进行比较。这种方式无法回避一个问题:随着待测器件的不同,信号源的输出功率可能会发生变化。为了消除这种误差,通常使用两通道的扫频仪(图8),其中一个通道作为“参考通道”。用分路器从信号源上直接取出一部分信号送进参考通道,另一个通道数值和参考通道进行比较,得到S参数。平常看到的标量网络分析仪几乎都是这种多通道的扫频仪。
图8
多通道的标量网络分析仪还可以借助一些巧妙的办法实现矢量分析,例如卡雷尔·霍夫曼的技术。随着矢量分析仪的进步,这种应用已经日趋减少。
带跟踪源的频谱仪
扫频仪的检波器具有宽带特性。不论是测试信号,还是信号源的谐波以及外部耦合的各种干扰,都同时被检波。被测器件如果是陷波器,对谐波就不能产生有效的压缩,于是测到的陷波量不能小于谐波的量。如果被测器件是已经安装好的天线,那么天线接收到的空中信号也会进入检波器,这会导致测到的驻波值虚大。此外,检波器的动态范围通常多达到70dB左右,导致仪器的动态范围较小。
带跟踪源的频谱仪把扫频仪的检波器换成了频谱仪的收机。频谱收机只响应中频带宽内的信号,跟踪源的谐波和外部耦合的干扰不对测试结果产生明显影响,因此可以测试陷波型器件。频谱仪具有较低的检波噪声和良好的中频放大器,这种由跟踪源和频谱仪组成的网络分析仪通常能达到100dB以上的动态范围。
如果没有跟踪源,可以使用频谱仪的大值保持功能,与手动扫描的信号源组成简易网络分析系统。
一些高档的标量网络分析仪也采用类似方案。由于网络分析仪的信号源频率及其谐波是可以预知的,因此这种仪器的“频谱收机”并不需要太好的带外抑制指标,可以采用比通常的频谱仪简单得多的收机。